

Akuter Schlaganfall -interaktives Fallseminar

21./22. 6. 2024, Berlin

Jan Sobesky

Prof. Dr. J. Sobesky

Chefarzt der Klinik für Neurologie mit Stroke Unit und Frührehabilitation Johanna-Etienne-Krankenhaus Neuss j.sobesky@ak-neuss.de

Ursachen des Schlaganfalls

Hirninfarkt 80%

Hirnblutung 20%

Was mache ich in der Akutversorgung?

- Schnelle Triage
- Schneller Neurostatus
- Pragmatische Bildgebung
- Stroke mimics erkennen
- Internistische Komplikationen erkennen
- Kontrolle Vitalparameter
- Lyse? Rekanalisation? Gerinnungstherapie?
- **Entscheidung** SU, IMC, ITS, Normalstation (?)

>>> auch am Sonntag früh um 3:30 !!!

Essentials: "akuter stroke"

#1: Zeitfenster 0-4,5 h: Frühzeichen, Infarkt, Gefäßverschluss

nCT 2 Stunden nach Beginn einer linksseitigen Hemiparese

CT und CTA: "Was muss ich erkennen?"

NATIV CT:

 Frühzeichen (early ischemic signs): hilfreich, wenn vorhanden Abblassung der Basalganglien Kortikale Schwellung Hyperdenses Mediazeichen

- Demarkierter Infarkt?
- ICB (SAB)?
- andere Pathologie?

CT Angiographie:

- Proximaler Gefäßverschluß (target vessel) z.B. M1, M2, Carotis T Gabel; ggfs. P1, A1?

#2: Zeitfenster > 4,5 h:

Risikogewebe = Penumbra = Mismatch

Bildgebung Risikogewebe (Penumbra/Mismatch)

Methode

MRT= Diffusion/Perfusionsmismatch

oder

pCT= Mismatch zwischen core (CBV oder CBF) und Perfusion (TTP oderMTT)

Mismatchbildgebung: Was muss ich erkennen?

Infarktkern "Rettbares Gewebe" ggfs. Therapiegefahr Tissue clock?

DWI FLAIR mismatch

DWI FLAIR Mismatch

Welche Methode?

MRT (*CT*???)

Was muss ich erkennnen?

Ausdehnung FLAIR Läsion und DWI Läsion

Welches Aussage hat es?

Wahrscheinlichkeit, dass stroke < 4,5 h

"Rettbares Gewebe"? Ggfs. Therapiegefahr? Tissue clock?

IV Thrombolyse < 4,5 h mit rtPA (IVT)

... ist Standardtherapie des akuten Schlaganfalls < 4,5 h mit und ohne Nachweis eines target vessel

> Besonderheiten*.... Alter Vorbehandlung TFH "relevanter Stroke" ? Gerinnung Zeitfenster Vorerkrankungen "lakunäres Syndrom" Diabetes Frühzeichen im CT microbleeds im MRT rtPA lyse light? Tenecteplase?

Metaanalyse EXTEND, ECASS4, EPITHET: Lyse 4,5-9 h und WUS

Extending thrombolysis to 4.5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data

Bruce C V Campbell*, Henry Ma*, Peter A Ringleb*, Mark W Parsons, Leonid Churilov, Martin Bendszus, Christopher R Levi, Chung Hsu,

- Individuelle Patienten Metaanalyse
- Lyse > 4,5-9 h und WUS
- EXTEND 225, ECASS4 119, EPITHET 70
- mRS 0-1: 36% vs 29%
- SICH 5% vs 1%

Figure 1: mRS scores at 3 months for all patients mRS=modified Rankin Scale.

Alteplase vs Tenecteplase

Tenecteplase vs Alteplase in Acute Ischemic Stroke

- TRACE-2 Studie: Wang et al. 2023 Lancet Neur
- TWIST Studie: Roaldsen et al. 2023 Lancet Neur

https://rebelem.com/tenecteplase-vs-alteplase-in-acute-ischemic-stroke/

NOAK und Antagonisierung

	Idarucizumab	Andexanet alfa	PPSB	
Target	Dabigatran (spezifisch)	Apixaban/ Rivaroxaban (spezifisch)	Gerinnungsfaktor en (varia)	
Spezifität	+++	+++	+	
Dosis	2x Kurzinfusion; fixe Dosis	Bolus + Kurzinfusion; 2 Regimes	Kurzinfusion, nach KG adaptiert	
Zulassung	+	+	-	
Kosten	++	+++	+	

Thrombolyse und NOAK

JAMA Neurology | Original Investigation

Intravenous Thrombolysis in Patients With Ischemic Stroke and Recent Ingestion of Direct Oral Anticoagulants

Thomas R. Meinel, MD; Duncan Wilson, PhD; Henrik Gensicke, MD; Jan F. Scheitz, MD; Peter Ringleb, MD;

CONCLUSIONS AND RELEVANCE In this study, there was insufficient evidence of excess harm associated with off-label IVT in selected patients after ischemic stroke with recent DOAC ingestion.

Type of anticoagulation used					
Dabigatran		15 (6.7)	75 (21.1)	252 (100)	
Rivaroxaban		119 (52.9)	139 (39.2)	0	
Apixaban	832	73 (32.4)	90 (25.4)	0	<.001
Edoxaban		18 (8.0)	50 (14.1)	0	
DOAC agent not specified		0	1 (0.3)	0	
Time from last ingestion to admission					
<12 h		39 (17.3)	73 (20.6)	130 (51.6)	
12-24 h		48 (21.3)	78 (22.0)	32 (12.7)	
24-48 h	832	43 (19.1)	59 (16.6)	1 (0.4)	<.001
Exact time point unknown		95 (42.2)	145 (40.8)	89 (35.3)	

Table 3. Outcomes of Patients With Acute Ischemic Stroke Treated With Intravenous Thrombolysis by Selection Strategy

Outcome	Controls (n = 32 035)	All patients with recent ingestion of DOACs (n = 832)	DOAC plasma levels measured (n = 225)	ldarucizumab (n = 252)	Neither known levels nor idarucizumab (n = 355)
Primary outcome					
Symptomatic intracranial hemorrhage within 36 h, % (95% CI)	4.1 (3.9-4.4)	2.5 (1.6-3.8)	3.1 (1.3-6.3)	1.2 (0.2-3.4)	3.1 (1.6-5.5)
Unadjusted OR (95% CI)	NA	0.62 (0.40-0.96)	0.66 (0.31-1.40)	0.30 (0.09-0.92)	0.84 (0.46-1.53)
P value	NA	.03	.28	.04	.56
Adjusted OR (95% CI)	NA	0.57 (0.36-0.92)	0.56 (0.26-1.21)	0.36 (0.09-1.48)	0.66 (0.35-1.25)
P value	NA	.02	.14	.16	.20

Kann unter OAK eine IV Lyse durchgeführt werden?

Start der OAK nach VHF-Schlaganfall: 13612 "Dieners' Rule"

TIA	Nach 1 Tag		
Leichter Schlaganfall	Nach 3 Tagen		
Mittelschwerer Schlaganfall	Nach 6 Tagen		
Schwerer Schlaganfall	Nach 12 Tagen		

Tab. 1: «1-3-6-12-Tagesregel»: Beginn oder

Neustart der oralen Antikoagulation nach TIA oder ischämischem Schlaganfall (nach Diener et al.⁴)

Diener HC et al.: Choosing a particular oral anticoagulant and dose for stroke prevention in individual patients with non-valvular atrial fibrillation: part 2. Eur Heart J 2016; 38: 860-8

OAK früh oder spät bei VHF? ELAN Study

Early versus Later Anticoagulation for Stroke with Atrial Fibrillation

U. Fischer, M. Koga, D. Strbian, M. Branca, S. Abend, S. Trelle, M. Paciaroni, G. Thomalla, P. Michel,

Α

CONCLUSIONS

In this trial, the incidence of recurrent ischemic stroke, systemic embolism, major extracranial bleeding, symptomatic intracranial hemorrhage, or vascular death at 30 days was estimated to range from 2.8 percentage points lower to 0.5 percentage points higher (based on the 95% confidence interval) with early than with later use of DOACs. (Funded by the Swiss National Science Foundation and others; ELAN ClinicalTrials.gov number, NCT03148457.)

Outcome within 30 Days	Early-Treatment Group (N=984) no. of ev	Later-Treatment Group (N=991) vents (%)	Adjus F	sted Risk Di (95% Cl) percentage po	fference ints	
Primary-outcome event	29 (2.9)	41 (4.1)		-	-1.18 (-	-2.84 to 0.47)
Major extracranial bleeding	3 (0.3)	5 (0.5)	 ;		-0.25 (-	-0.90 to 0.41)
Symptomatic intracranial hemorrhage	2 (0.2)	2 (0.2)		-	0.01 (-	-0.52 to 0.53)
Recurrent ischemic stroke	14 (1.4)	25 (2.5) -			-1.14 (-	-2.41 to 0.13)
Systemic embolism	4 (0.4)	9 (0.9)			-0.55 (-	-1.34 to 0.23)
Death from vascular cause	11 (1.1)	10 (1.0)	-1.5 0.0	1.5	0.13 (-	-0.84 to 1.09)
		Treat	Early nent Better	Later Treatment E	Better	

Outcome	Early-Treatment Group (N=1006)	Later-Treatment Group (N=1007)	Adjusted Odds Ratio (95% Cl)*
	no./total	no. (%)	
Primary outcome: composite outcome at 30 days	29/1006 (2.9)†	41/1007 (4.1)†	0.70 (0.44 to 1.14)‡

EXTEND - 🔼

Thrombektomie mit oder ohne IV Lyse?

IV Thrombolysis Initiated Before Transfer for Endovascular Stroke Thrombectomy

A Systematic Review and Meta-analysis

Aristeidis H. Katsanos. MD. Amrou Sarrai. MD. Michael Froehler. MD. Ian Purrucker. MD. Nitin Goval. MD. Correspondence

Neurology[®] 2023;100:e1436-e1443.

Figure 2 Probability for Good Functional Outcome at 3 Months

Ą	4D4					Odda aatia					
Study or subgroup	Events	Total	Events	Total	Weight (%)	IV, random, 95% CI		IV, ra	ndom, 959	% CI	
Ref. #15	125	237	68	135	27.2	1.10 (0.72, 1.68)		-	-	8	
Ref. #16	48	96	21	68	17.4	2.24 (1.17, 4.29)					
Ref. #17	162	437	112	369	34.4	1.35 (1.01, 1.82)			-	-	
Ref. #18	29	47	18	53	12.8	3.13 (1.38, 7.10)			_		
Ref. #19	26	55	6	21	8.3	2.24 (0.76, 6.63)		-		-	
Total (95% CI)		872		646	100.0	1.62 (1.15, 2.29)					
Total events	390		225								
Heterogeneity: Tau ² =	= 0.07; Chi	2 = 7.58,	df = 4 (p =	0.11);	2 = 47%	-	-		-	+	
Test for overall effect	z = 2.74 (p = 0.00	5)				0.2	0.5	1.0	2.0	5.0
							Favo	rs EVT alon	e Favo	rs tPA p	lus EVT
3											
Study or subgroup	Log[]	SE	Weight (%	6) IV,	random, 959	% CI		IV, ra	ndom, 959	% CI	
Ref. #15	0.039	0.225	33.	2	1.04 (0.67, 1	.62)		-			
Ref. #16	0.419	0.389	11.	1	1.52 (0.71, 3	3.26)			_	•	
Ref. #17	0.148	0.208	38.	9	1.16 (0.77, 1	.74)					
Ref. #18	0.278	0.622	4.	3	1.32 (0.39, 4	.47)					
Ref. #19	0.593	0.368	12.	4	1.81 (0.88, 3	1.72)			+	•	
Total (95% CI)			100.	0	1.22 (0.95, 1	.58)			-	•	
Heterogeneity: Tau ² =	= 0.00; Chi	2 = 2.05,	df = 4 (p =	0.73);	l ² = 0%	-		+			
Test for overall effect	z = 1.56 (p = 0.12)				0.2	0.5	1.0	2.0	
							Favo	rs FVT alon	e Ea	vors tP	A plus FV

(A) Unadjusted and (B) adjusted probability of good functional outcome (modified Rankin Scale score 2 or less) at 3 months between patients receiving IV thrombolysis before transfer for endovascular thrombectomy compared with patients receiving endovascular thrombectomy alone.

Mit Lyse !!!

Discussion

Patients with LVO receiving IVT at a PSC before an EVT transfer have a higher likelihood of excellent functional recovery and lower odds of mortality, with no increase in sICH and onsetto-groin puncture times, compared with those transferred for EVT without previously receiving IVT.

Original Investigation

February 7, 2024

Time to Treatment With Intravenous Thrombolysis Before Thrombectomy and Functional Outcomes in Acute Ischemic Stroke A Meta-Analysis Johannes Kaesmacher, MD, PhD¹; Fabiano Cavalcante, MD²; Manon Kappelhof, MD, PhD²; et al

> Author Affiliations JAMA. 2024;331(9):764-777. doi:10.1001/jama.2024.0589

Key Points

Question In patients with acute ischemic stroke undergoing thrombectomy, does a potential benefit associated with intravenous thrombolysis vary according to treatment times?

Findings In this individual participant data meta-analysis (n=2313) of 6 randomized clinical trials, intravenous thrombolysis plus thrombectomy was significantly associated with a favorable shift in functional outcome at 90 days vs thrombectomy alone if the time from symptom onset to expected administration of intravenous thrombolysis was within 2 hours 20 minutes. Thereafter, there was no statistically significant association.

Meaning The findings indicate that the benefit associated with intravenous thrombolysis prior to thrombectomy was time dependent and lessened with longer times between symptom onset and expected administration of intravenous thrombolysis.

Mit Lyse nur bis 3 h ???

n=206

Thrombekotomie 6-24 h vs BMT

Clinical/infarct-mismatch

(Group A: > 80j, NIHSS > 10, infarct core < 21ml; Group B: < 80j, NIHSS > 20, infarct core 31-51ml; Infarct core by DWI or PCT (CBV)) N= 180

Thrombekotomie 6-16 h vs BMT

Diffusion/Perfusion mismatch > 1.8

(Infarct < 70 ml; RAPID)

Nogueira 2017

Albers 2018

Weches Imaging?

Ist nCT bei large vessel occlusion ausreichend? Brauche ich noch CTP oder MRT?

- 1604 pat. Mit LVO und 6-24 h; mögliche MT
- Selektion durch CT (534), CTP (752) und MRT (318)
- Klinischer Benefit gleich in CT vs CTP
- Blutungsraten gleich in CT vs CTP

(Nguyen et al, JAMA Neurol 2022)

Figure 2. Distribution of 90-Day Modified Rankin Scale Score (mRS) in Patients Presenting in the Window 6 to 24 Hours After Time Last Seen Well With Internal Carotid Artery and Middle Cerebral Artery M1/M2 Occlusions, by Imaging Modality

Bald nur noch nCT und CTA?

MT> 24h?

Figure 2. Distribution of 90-Day Modified Rankin Scale (mRS) Scores in the Study Population According to Type of Treatment Received

The control group received medical management only. Modified Rankin Scale scores range from 0 to 6 with higher scores indicating worse outcomes.

JAMA Neurology | Original Investigation

Association of Endovascular Thrombectomy vs Medical Management With Functional and Safety Outcomes in Patients Treated Beyond 24 Hours of Last Known Well The SELECT Late Study

Amrou Sarraj, MD; Timothy J; Kleinig, MBBS(Hons), PhD; Ameer E; Hassan, DO; Pere Cardona Portela, MD; Santiago Ortega-Gutierrez, MD; JAMA Neurology February 2023 Volume 80, Number 2

The graph illustrates the potential increase in the rate of symptomatic ICH as time progresses (P = .06). Shading indicates 95% CIs. SITS-MOST indicates the Safe Implementation of Thrombolysis in Stroke–Monitoring Study.

CONCLUSIONS AND RELEVANCE In this study of treatment beyond 24 hours of last known well, EVT was associated with higher odds of functional independence compared with medical management, with consistent results obtained in P5 matched subpoulations and patients with presence of mismatch, despite increased odds of sICH. Our findings support EVT feasibility in selected patients beyond 24 hours. Prospective studies are warranted for confirmation.

MT bei niedrigem NIHSS?

Association of Perfusion Lesion Variables With Functional Outcome in Patients With Mild Stroke and Large Vessel Occlusion Managed Medically

news!

Correspondence Dr. Lin

newcastle edu au

longting.lin@

(A) Perfusion lesion volume <65 mL vs =65 mL and (B) penumbra volume <48 mL vs =48 mL. LVO = large vessel occlusion; mRS = modified Rankin Scale.

Discussion

A perfusion lesion of \geq 65 mL predicted poor functional outcome in mild stroke patients with LVO.

MT bei großem Infarkt?

This article is available to subscribers. Subscribe now. Already have an account? Sign in

ORIGINAL ARTICLE

Trial of Endovascular Therapy for Acute Ischemic Stroke with Large Infarct

Xiaochuan Huo, M.D., Ph.D., Gaoting Ma, M.D., Ph.D., Xu Tong, M.D., Ph.D., Xuelei Zhang, M.D., Ph.D., Yuesong Pan, Ph.D., Thanh N. Nguyen, M.D., Guangxiong Yuan, M.D., Hongxing Han, Ph.D., Wenhuo Chen, Ph.D., Ming Wei, M.D., Jiangang Zhang, M.D., Zhiming Zhou, M.D., et al., for the ANGEL-ASPECT Investigators*

Article	Figures/Media	Metrics	April 6, 2023
			N Engl J Med 2023; 388:1272-1283

Conclusions

In a trial conducted in China, patients with large cerebral infarctions had better outcomes with endovascular therapy administered within 24 hours than with medical management alone but had more intracranial hemorrhages. (Funded by Covidien Healthcare International Trading [Shanghai] and others; ANGEL-ASPECT ClinicalTrials.gov number, <u>NCT04551664</u>. opens in new tab.)

Spätes Zeitfenster/hoher ASPECT

JAMA Network Open...

Original Investigation | Neurology Association of Thrombectomy With Functional Outcome for Patients With Ischemic Stroke Who Presented in the Extended Time Window With Extensive Signs of Infarction

JAMA Network Open. 2022;5(10):e2235733. doi:10.1001/jamanetworkopen.2022.35733

Gabriel Broocks, MD; Uta Hanning, MD; Matthias Bechstein, MD; Sarah Elsayed, MD; Tobias D. Faizy, MD; Caspar Brekenfeld, MD; Fabian Flottmann, MD;

Figure 2. Association of Time and Recanalization With Estimated Favorable Outcome

CONCLUSIONS AND RELEVANCE In this cohort study reflecting daily clinical practice, vessel recanalization for patients with a low ASPECTS and extended time window was associated with better functional outcomes in a time window up to 17.6 hours and ASPECTS of 3 to 5. The results of

MT bei mRS>2?

Table 3 Multivariable Logistic Regression, SMR, and IPTW Evaluation of Thrombectomy for Return of Rankin^a

	Multivariable model		SMR model OR (95%	CI), <i>p</i>	IPTW model				
		Overall mRS 2–4 (n = 554)							
Medical management	Referent								
Mechanical thrombectomy	3.96 (1.78–8.79)	0.001	3.00 (1.10-8.15)	0.032	3.10 (1.20–7.98)	0.020			
			Premorbid mRS 2	(n = 276)					
Medical management	Referent								
Mechanical thrombectomy	4.36 (1.01–18.79)	0.048	2.99 (0.47–19.07)	0.247	3.18 (0.53–19.05)	0.206			
			Premorbid mRS 3	(n = 205)					
Medical management	Referent								
Mechanical thrombectomy	3.80 (1.01–14.24)	0.048	4.40 (0.86-22.50)	0.075	4.22 (0.91–19.54)	0.066			
			Premorbid mRS 4	4 (n = 73)					
Medical management	Referent								
Mechanical thrombectomy	4.00 (0.76–21.06)	0.102	2.03 (0.38-10.93)	0.410	2.21 (0.45–10.79)	0.325			

Neurology[®] 2023;100:e751-e763.

Endovascular vs Medical Management for Late Anterior Large Vessel Occlusion With Prestroke Disability Analysis of CLEAR and RESCUE-Japan

James E. Siegler, MD, Muhammad M. Qureshi, MBBS, MPH, Raul G. Nogueira, MD, Kanta Tanaka, MD, PhD, Correspondence

Discussion

In patients with preexisting disability presenting in the 6- to 24-hour time window, MT is associated with a higher probability of returning to baseline function compared with medical management.

MT: später Patient, der nicht "passt"....

MECHANICAL THROMBECTOMY VERSUS BEST MEDICAL TREATMENT IN THE LATE TIME WINDOW IN NON-DEFUSE-NON-DAWN PATIENTS (RESCUE EVT)

4 according to inverse probability of treatment weighting analysis; ⁵ adjusted common odds ratios

Dittrich et al., 2023 Mar;54(3):722-730.

Basilar Artery Occlusion BAO MT mit IVT?:

ATTENTION Studie BAOCHE Studie

Trial of Thrombectomy 6 to 24 Hours after Stroke Due to Basilar-Artery Occlusion

T.G. Jovin, C. Li, L. Wu, C. Wu, Jian Chen, C. Jiang, Z. Shi, Z. Gao, C. Song,

N Engl J Med 2022;387:1373-84. DOI: 10.1056/NEIMoa2207576 news!

Therapieoptionen mit Gefäßverschluss

Frühes Zeitfenster:

Thrombektomie mit Lyse (wenn möglich)

Spätes Zeitfenster:

Penumbrabildgebung durch **MRT** (DW/PW-mismatch) oder durch **Perfusions CT** (CBV oder CBF/TTP-mismatch)

oder

Infarktkern (MRT/pCT) vs. klinische Beeinträchtigung (!)

...check your local stroke manual...

Lyse nach DWI/FLAIR Mismatch

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset

G. Thomalla, C.Z. Simonsen, F. Boutitie, G. Andersen, Y. Berthezene, B. Cheng,

Figure 2. Distribution of Scores on the Modified Rankin Scale at 90 Days (Intention-to-Treat Population).

Outcome	Alteplase Group (N=254)	Placebo Group (N=249)	Effect Variable	Adjusted Value (95% CI)†	P Value
Primary efficacy end point					
Favorable outcome at 90 days — no./total no. (%)‡	131/246 (53.3)	102/244 (41.8)	Odds ratio	1.61 (1.09 to 2.36)	0.02
Secondary efficacy end points					
Median score on modified Rankin scale at 90 days (IQR)§	l (l to 3)	2 (1 to 3)	Common odds ratio	1.62 (1.17 to 2.23)	0.003¶

Therapieoptionen im unbekannten Zeitfenster, jedoch < 9h (auch Wake Up Stroke) <u>ohne</u> Gefäßverschluss

Falls Wake Up:Bestimmung des 4,5 h Zeitfenster mittels DWI/FLAIR MRT
(alternativ gfs. Perfusions CT*)

Falls 4,5-9h:Mismatchbildgebung zur Frage tissue at risk durch

- MRT (DW/PW-mismatch) oder

- Perfusions CT (z.B. CBV/MTT-mismatch)

...check your local stroke manual...

Die 3+3 Fragen der Schlaganfallversorgung

Was ist das Zeitfenster?

Wie relevant ist der stroke?

Ist Patient: in lysefähig?

Alltagsrelevanz

Alter des Stroke

= **3**A

Alteplase (noch)

Wahl der Bildgebung

Infarktkern?

Target vessel?

Mismatch?

Gewebe

Gefässe

= 3G

Gewinn

Intracranielle Blutungen

- Intrazerebral
- Epidural
- Subdural
- Subarachnoideal
- SVT

ICB vs Hirninfarkt

- Keine kausale Therapie (Lyse/Thrombektomie)
- Keine "TIA" als Warnsignal
- Therapiefenster unklar
- Geringere Evidenzlage für Therapie (Häufigkeit)
- Schwerer Defizit (Gewebsläsion)
- Schnelle Dekompensation (infratentoriell)
- RR Kontrolle und Gerinnungskontrolle essentiell

ICB: Hauptfragen

- Überwachung
- Bildgebung? Kontrolle?
- RR Kontrolle
- Gerinnungskontrolle
- Operative Therapie

ICB: RR Kontrolle und Studien

Name	Inhalt	Ergebnis
INTERACT Anderson et al., Lancet Neurol 2008	Intensive (< 140 mm Hg) vs. mässige (140-180 mmHg) RR Senkung; meist Urapidil	Intensive Senkung reduziert Volumenzunahme
INTERACT2 Anderson et la. NEJM 2013	s. INTERACT	Klinischer Endpunkt (mRS 0-2) nicht signifikant besser; aber: Shift -Analyse zeigt Vorteil der intensiven RR Therapie
ATACH2 Qureshi et al. NEJM 2016	S. INTERACT plus Korridor für intensive RR Senkung: 140-110 mm Hg	Klinischer Endpunkt (mRS 0-3)
Post hoc Analyse ATACH2 Li et al Ann Neurolo 2020	Volumenzunahme 24 h geringer <u>und</u> fun RR Senkung innerhalb 2 h nach ICB star	ktionelles Outcome nach 3 Monaten besser, wenn: tet

ICB: RR Therapie

- RR Senkung in RCT oft zu spät !
- Falls frühe RR Kontrolle > klinischer Benefit!
- Falls RR zu tief: Niereninsuffizienz
- Time is brain !

RR syst 140-100 mmHg innerhalb von 2 h (RR syst. Sollte nicht unter 90 mmHg gehen)

RR Senkung im RTW?: INTERACT 4

Based on the NEJM publication: Intensive Ambulance-Delivered Blood-Pressure Reduction in Hyperacute Stroke by G. Li et al. (published May 13, 2024)

RESULTS

Overall, patients' functional status at 90 days did not differ between the intervention group and the usual-care group.

In patients with hemorrhagic stroke, immediate BP reduction was associated with a decrease in the odds of a poor functional outcome. In patients with ischemic stroke, it was associated with an increase.

Difference in Functional Status at 90 Days

Common odds ratio, 1.00 (95% CI, 0.87-1.15)

The incidence of serious adverse events did not differ significantly between groups.

Ergebnisse: ESOC 2024

ICB unter NOAK

	Idarucizumab	Andexanet alfa	PPSB
Target	Dabigatran (spezifisch)	Apixaban/ Rivaroxaban (spezifisch)	Gerinnungsfak toren (varia)
Spezifität	+++	+++	+
Dosis	2x Kurzinfusion; fixe Dosis	Bolus + Kurzinfusion; 2 Regimes	Kurzinfusion, nach KG adaptiert
Zulassung	+	+	-
Kosten	++	+++	+

PPSB: wenig Evidenz aber klinische Realität

(Prothrombin-konzentrat: II, VII, IX)

www.brainkart.com

Hämatomwachstum bei ICB unter OAK

Original Investigation

Anticoagulant Reversal, Blood Pressure Levels, and Anticoagulant Resumption in Patients With Anticoagulation-Related Intracerebral Hemorrhage

Joji B. Kuramatsu, MD; Stefan T. Gerner, MD; Peter D. Schellinger, MD; Jörg Glahn, MD; Matthias Endres, MD; Jan Sobesky, MD; Julia Flechsenhar, MD;

Figure 2. Association of Timing and Extent of INR Reversal With Hematoma Enlargement

CONCLUSIONS AND RELEVANCE Among patients with OAC-associated ICH, reversal of INR <1.3 within 4 hours and systolic BP <160 mm Hg at 4 hours were associated with lower rates of hematoma enlargement, and resumption of OAC therapy was associated with lower risk of

Kuramatsu et al 2015, JAMA

ICB unter OAK: RR- und INR-Kontrolle "time ist brain" in ICB

	No. of Patients	Patients With Hematoma Enlargement, No. (%)	OR (95% CI)	Favors Prevention of Hematoma Enlargement	Does Not Favor Prevention of Hematoma Enlargement	P Value
INR <1.3				•		
Achieved	432	116 (26.9)	0.27 (0.26.0.50)	_		<.001
Did not achieve	421	191 (45.4)	0.37 (0.26-0.59)			
INR <1.3 within 4 hours						
Achieved	217	43 (19.8)	0.07 (0.15, 0.40)	_		< 001
Did not achieve	636	264 (41.5)	0.27 (0.15-0.43)			<.001
INR <1.3 within 4 hours and systolic BP <160 mm Hg with	in 4 hours					
Achieved	193	35 (18.1)	0.17 (0.11.0.22)	_		< 001
Did not achieve	498	220 (44.2)	0.17 (0.11-0.33)			<.001
				0.1 1 OR (9	.0 10 5% CI)	

ICB: offene operative Therapie

STICH , STICH II Reanalyse STICH

OP (=chirurgische Hämatomausräumung) bei supratentorieller ICB kann erwogen werden, falls oberflächlich, lobär, ohne Ventrikeleinbruch

ICB: minimalinvasive Evakuation plus Thrombolyse

MISTIE, MISTIE III

Minimalinvasive Hämatomevakuation plus intrathekale Thrombolyse kann bei akuter spontaner ICB > 30 ml Volumen erwogen werden i.R. einer klinischen Studie

SWITCH ???

ICB und Operation: SWITCH

Decompressive craniectomy plus best medical treatment versus best medical treatment alone for spontaneous severe deep supratentorial intracerebral haemorrhage: a randomised controlled clinical trial

www.thelancet.com Vol 403 June 1, 2024

Interpretation SWITCH provides weak evidence that decompressive craniectomy plus best medical treatment might be superior to best medical treatment alone in people with severe deep intracerebral haemorrhage. The results do not apply to intracerebral haemorrhage in other locations, and survival is associated with severe disability in both groups.

Jürgen Beck, Christian Fung, Daniel Strbian, Lukas Bütikofer, Werner J Z'Graggen, Matthias F Lang, Seraina Beyeler, Jan Gralla, Florian Ringel,

	Decompressive craniectomy plus best medical treatment (n=96)		Best medical treatment alone (n=101)		Adjusted effect (95% CI)*	p value†
	N‡ (imputed)	N (%) or median (IQR)	N‡ (imputed)	N (%) or median (IQR)	-	
Primary outcome (mRS 5–6 at 180 days)						
Complete cases (main analysis)	95	42 (44%)	95	55 (58%)	RR 0·77 (0·59 to 1·01); RD –13% (–26 to 0)	0.057
With multiple imputations	96 (1)	43 (45%)	101(6)	59 (58%)	RR 0.76 (0.59 to 0.99); RD -14% (-27 to 0)	0.042
Secondary efficacy outcomes						
mRS 5–6 at 365 days	96 (3)	41 (43%)	101 (12)	52 (51%)	RR 0.81 (0.60 to 1.08); RD -10% (-23 to 4)	0.15
Mortality at 180 days	96	16 (17%)	101	27 (27%)	RR 0.61 (0.36 to 1.01); RD –11% (–21 to 0)	0.065
Mortality at 365 days	96	21 (22%)	101	30 (31%)	RR 0.70 (0.45 to 1.08); RD -9% (-21 to 2)	0.14
mRS 4–6 at 180 days	96 (1)	83 (86%)	101(6)	87 (86%)	RR 0.99 (0.89 to 1.11); RD –1% (–10 to 9)	0.89
mRS at 180 days	96 (1)	4 (4-5)	101(6)	5 (4 to 6)	Common OR 0·57 (0·34 to 0·97); Mann–Whitney statistic§ 0·43 (0·35 to 0·50)	0·039; 0·074 (0·046)¶

ICB: sonstige Massnahmen

Externe Ventrikeldrainange (EVD) bei intraventrikulärer ICB und Hydrozephalus (Keine RCT Daten)

EVD mit intrathekaler Thrombolyse: CLEAR III

EVD mit intrathekaler Thrombolyse und lumbaler Drainage

ICP Messung: ICP > 20 mm Hg prädiktiv für schlechtes outcome

(Hanley et al., Lancet 2017; Staykov et al., Ann Neurol 2016; Hawryluk et al. JAMA Neurol 2020)

ICB: infratentoriell

Kuramatsu et al. 2019:

- Registerdaten für n= 6580
- n= 152 infratentoriellen Pat. mit/ohne Evakuation
- nur Effekte auf Überleben nach 3 und 12 Monaten

Bei spontaner zerebellärer Blutung > 15 ml Volumen kann eine Hämatomevakuation erwogen werden

Ärztliche Fortbildung 12. INTENSIVKURS STROKE-UNIT-STARTER

Akuter Schlaganfall

21./22. 6. 2024, Berlin

Jan Sobesky

Prof. Dr. J. Sobesky

Chefarzt der Klinik für Neurologie mit Stroke Unit und Frührehabilitation Johanna-Etienne-Krankenhaus Neuss j.sobesky@ak-neuss.de

